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NASA TT F-11,673
SCHWARZ'S FORMULA FOR THE EQUATION 3w/3z + bw = 0

M.V. Sheveleva

ABSTRACT. This article concerns the derivation of a
generalized Schwarz's formula for the equation

ow/3z + bw = 0. Various methods are employed for this
purpose, involving the use of differential equations,
eliptical equations, analytic functions and complex
variables. The stated purpose of the article is to
express the nucleus of the generalized Schwarz's formula
for the canonical regions, i.e. the half-plane and band,
in terms of special functions by using the generalized
Cauchy's formula. Such a formula could not be derived
for the case of the circle. Instead, the nucleus is
expressed as a series.

1. Let us look at the differential equation
ow [0z + bw = 0, _ (1)

where 3/3z = 1/2(3/3x + i3/3y), £ (z) = u(x,y) + iv (x,y), equivalent to a

system of two equations of the elliptical type relative to the real functions
u(x,y) and v(x,y). The theory of equations (1) was developed in the articles
of I.N. Vekua [1,2]. In the case where A, B, F € Lp’ p > 2, we will use the

method of [1], based on the integral representations of solutions by way of
the analytic functions of the variable z = x + iy. In the case where A, B, F
are analytic with respect to x and y we will use the method of [2], based on
the continuation of solutions into the region of the complex variables z = x +
+ iy and ¢ = x - iy. Thus, there will be times, for example in the case of
the constant coefficients A and B in an unbounded region, when the second
method will be more advantageous.

By introducing a new function according to the formula
£(z) = w(z) exp { 34(z,z)dzdand considering F = 0 we obtain from (1)

of | 9z + Af -+ Bf = F, (2)

* Numbers in the margin indicate pagination in the foreign text.

/531*



where b= Bexp ‘121, ImB 4, 7) d_z} .

! Let us examine the case of the constant b. As follows from [1], page 182,
‘ each solution of equation (2) satisfies the metaharmonic equation

’
and conversely, if wl(z) is the general solution of equation (3} then w(z) =

1 wy(z) | . :
= WI(Z) - :———SE——-ylelds the general solution for equation (2).
b

2. On page 308 of [1] the generalized Schwarz formula for an equation
similar to type (1) is shown. The purpose of this article is to express the
nucleus of a generalized Schwarz formula for the canonical regions, i.e., the
half-plane and band, in terms of special functions by using the generalized
Cauchy's formula obtained in [3] for the case of equation (2) with a constant
coefficient b # 0. In the case of the circle, unfortunately, we have not been
able to derive an analogous formula, and the nucleus is expressed in the form
of a series (see formula (20)).

In the case of the half-plane the problem is to find the solution w(z)
of equation (2) which is regular in the upper half-plane y > 0 and satisfying
on the real axis the condition Re w = u(x), where u(x) is a given function,
and satisfying the relation

y;(z) =_exp [210|r]r "0 (L), r= Iz[., (4

in the vicinity of the infinitely distant point. We will assume here that
u(x) is H-continuously differentiated one time and is a member of L2 (- ,0).

In accordance with [1], page 239, we will seek the solution of w(z) in
the form of Cauchy's integral

Q(z, w (t)dt — Qu(z, Yw ()dE,  w(t) =u(t) + iv (1), (5) /532

where (see [3]).

z—1

= H®P (2i|b]|z—t), 6)
Q,(z, t) = — abi P (2i | b]| z —t]).

Q,(z, t) = 7| b

N
If we substitute the values Ql(z,t) and'Qz(z,t) into formula (5) we will

pass to the boundary for z + x + i0, and then we will use the boundary
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condition which for the unknown function v(t) will yield the integral equation

@ |
_Bx{lblli;_ilHﬁ”(‘Zi|be—~t])——bcosc-[llf,”\(Zilb]lx——tl)}v(i)dt= !

e (N
=u(z) — 3 |blsino-ilI(Y (21| b||x—1t]) u (t) dt,

-—o0

where b = |b|eio.

gl) (2i|b] |x - t]) is real and Hél) (2i]b]

|x - t]) is a purely imaginary number (see [4], page 163). We may assume
(see [1], page 228) that the desired function v(x) is H-continuously differenti-
ated at each finite point on the real axis.

Now we have learned that H

By carrying out the obvious transformations over the left half of equation
(7) we obtain

5Hf,"(zubnx_cp(p(c)dt:u(x), —olz<loo, (8)

where
' q)(t)=——21i—v’(t)—_——;b[::oso~z'v(z‘)+|b[sino-izz(t). (9)

If ¢(t) has been found, then by solving the linear differential equation
of the first order (9), we will obtain:

v(t) = exp[2]|b|cosc-!] {C+S[—2!blsinc-u(t)—2icpt)] y o
¥ exp [Zlb]cosg.t]dg}’

where C is a real constant.

Equation (8) is solved by the Fourier method of integral conversions
(see [5], pages 400-401). It is simple to prove that for b # 0 the nucleus
of equation (8) is a member of L1 (-»,») (see [6], page 746, formula 14).

Direct computations show that (for all real b)

@(x)=:£; S V @? - 4b* exp [— iar] da S u(tyexp [fat]dt.




By substituting this expression in formula (10) we find:

v ()= Cexp [2bz] +

+ -y [l — )+ b1 (20 |b| [z —tD]u (0 dr. (1D
Then by substituting (11) for C = 0 in formula (5) we find . /533
,__.Lm_‘?_ﬂl)g'b — BHM (2i bz —tDbu(t)dt -
w(e) =5 | {57 A6 i[b]|z—t]) + bH" i [b] |z —EDju(ndl +
\ u(t) dt \ {%H(‘,"(zzlb||z—x\)~b11§”(2i1b||z—x)1)} X (12)

x{ 0P 2i|b]|o—t]) +bHP 26| [a—th}dz. |

Let us now consider the function

e_./’18

(2 g i \bln_.t\)-{-bH“)(Zzle —»tl)}v(t)dt-

w(z) = ) (22 (13)

If u(t) vanishes in the vicinity of the infinitely distant point equation
(13) will be asymptotic [4]. Furthermore, a direct check shows that this
function satisfies equation (2) (see end of paragraph 1) and the boundary
condition Re w = u(x) on the axis y = 0. On the other hand it can be
represented by formula (12). Consequently formula (12) conforms with formula
(13) if u(t) vanishes in the vicinity of ». For arbitrary u(t) € L2 (=)

formula (13) proves to be the passage to the limit.

Formula (13) is in fact the generalized Schwarz formula for equation (2)
in the case of the real constant b for the upper half-plane.

In the case of the complex b the formula has a more awkward form.
3. Let us consider the case of the band 0 < Im z < h.

By finding the solution w(z) of equation (2) which satisfies the
conditions

Re w = uy(x) fory =0, uy(x) € Ly (-=,>),

h, ul(x) € L2 (_oo,oo),

Re w ul(x) for y
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in the form of Cauchy's integral and reasoning as before we find the system
of integral equations:

VHE @ifolle— Do drt | HP @b |z —t—b) p(O)dt = fu(2),
- - (14)
S H® 20]b| [z—t[p()dt + | HP (2i]b] |z —t+ ik @(0)dt =1 (2),
where
(1) = — 5 voft) — biva (), (1) — — v () — bivy (2),

(=]

hu(@) = no(2)— | b b § HO@ ) e—t—in) 725

—Co

u (tydt
f(@) = us(2) + bk 5 HY @b |2t + i) 25

—co

Wo = Ug * ivo, Wy o= ug iv1 are the values of the desired function for y = 0

and y = h respectively.

By solving system (14) by Fourier's method we obtain the formula

/534
w(2) = - \ {—aa-z—Hé‘)(Zilez—tl)-{—bHE,”(‘Zi]b][z—tl) +
+{;i- S [—0‘?— 10 (2116 |2 — t|)— bHE (20| b] |2 — t: D1 Ru(ts, 1)dtr —
— ot \ [ HO Qi |b||z—t, —ib])—
—bHOQ2i|b] |z —t, — ih])] Ra(t, t)dtl} o (£) dt + (15)

+5\ [ H (20| b |z —t— ik]) 4+ bHS (20| b] |2 — t — ih]) —
— o ) [—%”ﬁ’)@ilbliZ~t1!>~bHé"<2iibHz—tli)}m(a, tdty +-

S \ { a <1>(24b|1d_t1_zh|)—~bﬂ"(2z|b[|7—z1+m1)]

X Ry(ty, Hdtfur (L,




where
Rz, 1) ]= R V 2 (@ 10 exp [— RV @R x
Rs(z, t)) ¥, n

- FCRTIAX: (2b —ia) exp Jia (¢ — )] du
X Ky (Y 0* + 4 )} (I—oxp[—2hV @+ 46°]) Vo& - 4b° '

Rs(z, 1) ~°° I Lp2y 773
Ry(z, t) }_ S {“_“ ]/T(“ + 46%) *exp [A} o® + 4b°] X

—0

(26 — i) exp [— h V'a® + 4b7] exp [ia (t — 2)} da '
(1 —exp[— 2k Va2 + &%) YV + 4b°

X Ky, (h ]/(12 - 4b%) }

The top symbol corresponds to the top function and the bottom symbol
corresponds to the bottom function.

The case of the unit circle is similarly considered. The solution

however is not obtained in a closed (integral) form, but rather by using
several infinite series.

In conclusion I wish to express my gratitude to I.I. Danilyuk for the
statement of the problem and his assistance in writing this article.

REFERENCES

1. Vekua, I. N., Oboshchennyye Analiticheskiye Funktsii [Generalized Analytic
Functions], Moscow, 1959,
. Vekua, I. N., Matem. Sborn., Vol. 31 (73), No. 2, 1952.
. Voloshina, M. S., DAN, Vol. 153, No. 6, 1963. ] ) . .
. Lebedev, N. N., Spetsial'nyye Funktsii i Ikh Prilozheniya [Special Functions
and Their Applications], 1953. ' .
5. Titchmarsh, Ye., Wwedeniye v Teoriyu Integralov Fur'ye [Introduction to the
Theory of Fourier Integrals], 1948. . ]
6. Gradshteyn, I. S. and I. M. Ryzhik, Tablitsy Integralov, Sum, Ryadov, 1
Proizvedeniy [Tables of Integrals, Sums, Series, and Products], Moscow,
1963.

NN

Translated for the National Aeronautics and Space AdministratiQn under contract
No. NASw-1695 by Techtran Corporation, P.0. Box 729, Glen Burnie, Maryland 21061




